
CPE101 Programming Languages I

Assoc. Prof. Dr. Caner ÖZCAN

Week 2
Variable Concept and Basic Operators

2

Object

►Any accessible thing which takes a memory space
is called an object.

►An expression should indicate a memory space to
be called as an object.

▪ a = b+c;

▪ d = 100;

►In the above expressions, a, b, c and d are all an
object.

3

Object

►Properties of Objects: name, value, type, scope,
lifetime.

►Name: Characters that represent an object.

►Value: Information stored in an object. It can be
changed at any time.

►Type: A property that specifies how a compiler
behaves to an object on a process.

– Most of the programming languages includes object
types such as char, integer and float.

►Assigns a value to an object. It is showed by an
equal sign " = " in C.

►Usage of assignment operator:

object = expression;

►Examples:

4

a = 23;

b = a * 10;

total = total + b;

Assignment Operator

5

Left Values (lvalue)

►All expressions that specify object are left values.

►An expression is called as left value if it shows a
location in the memory.

►For example, in previous example expression, a
and b are the left values.

►But, a+b is not a left value. It only represents a
number which indicates the sum of a and b.

►For example we can not write, a+b = c

►Expressions that do not specify objects. They take
place on the right side of assignment operator.

►Constants are always right value.

►For example, in an expression a = 100; a indicates
a left value and 100 indicates right value.

►An expression like 100 = a; is wrong.

►Following expressions have mistakes.

6

20 = ...; /* mistake */

c – 4 = ...; /* mistake */

(y) = ...; /* mistake */

m * 2 = ...; /* mistake */

Right Value (rvalue)

7

Object Type

►All information that points a memory space or not,
is called data.

►Both constants and objects are all data.

►The way that compiler interprets an information
stored inside an object depends on the type of
that object.

►At the same time, an object type gives information
about the amount of memory space that is
consumed by the object.

8

Object Type

►Objects are stored at a location inside the memory.
►For example, objects "a" and "b" are put in a free

location in the memory.
►Memory space they consume depends on their types

and can be different.
►"a" and "b" are only labels that indicate the starting

point of a location in the memory.
►An assignment like a = 100 changes the value in the

memory location indicated by related object.
►For example, we have two objects assigned with

values a= 100 and b = 50
►An expression like a = b + 80 only changes the value of

a but b is preserved.

9

Object Type

10

Expression

►An expression is a mathematical formula used for
calculation and end with a semicolon ";"
– (a+b)/4;

– a*b+c;

►Expressions are formed by Operators

►C operators can be classified as shown below:
– Assignment Operator (=)

– Arithmetic Operators (+, -, *, /, %)

– Arithmetic Assignment Operators (+=, -=, *=, …)

– Increment and Decrement Operators (++, --)

– Relational Operators (<, <=, ==, >=, >)

– Logical Operators (&&, ||, !)

11

Arithmetic Operators

►The arithmetic operators are all binary operators.

–For example the expression 3+7 contains the binary
operator + and the operands 3 and 7.

►The asterisk (*) indicates multiplication and the
percent sign (%) denotes the remainder operator.

►Integer division yields an integer result.

–For example the expression 7/4 yields 1.

12

Arithmetic Operators

►C provides remainder operator %, which yields the
remainder after integer division.

►The remainder operator is an integer operator that
can only be used with integer operands.

►The expression x % y yields the remainder after x is
divided by y. Thus 7%4 yields 3.

13

Operation
Arithmetic
Operator

Addition +

Subtraction -

Multiplication *

Division /

Remainder %

Arithmetic Operators

14

ORDER OPERATOR OPERATION

1 () Paranthesis

2 *
/
%

Mutiplication
Division
Remainder

3 +
-

Addition
Subtraction

Precedence Rules on Arithmetic Operators

15

Precedence Rules on Arithmetic Operators

►Expressions within pairs of parentheses are evaluated
first.

► Parentheses are said to be highest level of precedence.

► In cases of nested or embedded parentheses such as
– ((a+b)+c) (the operators in the innermost pair of parentheses are applied

first)

► Paranthesis in the same level are evaluated from left to
right.

► Multiplication, division and remainder comes after
parenthesis.

► Addition and subtraction has the same level of precedence,
which is lower than the precedence of multiplication,
division and remainder operations.

16

Precedence Rules on Arithmetic Operators

► Multiplication, division and remainder are said to be on the
same level of precedence.

► If an expression contains several multiplication, division and
remainder operations, evaluation proceeds from left to
right.

► If an expression contains several addition and subtraction
operations, evaluation proceeds from left to right.

► Remembering rules of precedence can be complex.
► You would better try to use parenthesis in order to

specify precedence of operators in expressions.
• For example: result = (a*b) + (a/b);

► If we want to divide the entire quantity (a+b+c+d+e) by 5.
 m= (a + b + c + d + e) / 5;

► Here, parentheses are required to group the additions because division
has higher precedence than addition.

► If the parentheses are omitted we obtain a+b+c+d+e/5. And it would first
calculate e/5 then additions.

 z = p * r % q + w / x – y;

• y = a * x * x + b * x + c;
a = 2, b = 3, c = 7 and x = 5
y = 2 * 5 * 5 + 3 * 5 + 7
y = 10 * 5 + 3 * 5 + 7
y = 50 + 3 * 5 + 7
y = 50 + 15 + 7
y = 65 + 7
y = 72

17

6 1 2 4 3 5

Precedence Rules on Arithmetic Operators

18

Arithmetic Assignment Operators

►Arithmetic assignment operators are:
+= -= *= /= %= …

►result = ++a; → first increment the value of a,
then assign it to result (preincrement)

►Same with :

►result = --a; → first decrement the value
of a, then assign it to the result
(predecrement)

• Same with:

19

a = a+1;

result = a;

a = a-1;

result = a;

Unary Increment and Decrement Operators

► result = a++; → First assign the value of a to result, then increment
the value of a (postincerement)

► Same with:

► result = a--; → First assign the value of a to result, then
decrement the value of a (postdecrement)

► Same with:

► It’s important to note here that when incrementing or
decrementing a variable in a statement by itself, the preincrement
and postincrement forms have the same effect. Same with:

20

result = a;

a = a+1;

result = a;

a = a-1;

Unary Increment and Decrement Operators

21

Relational Operator

== X == Y X is equal to Y

!= X != Y X is not equal to Y

> X > Y X is greater than Y

< X < Y X is less than Y

>= X >= Y X is greater than or equal to Y

<= X <= Y X is less than or equal to Y

Relational Operators

►Expressions that compare two values and produce
either True (1) or False (0) are formed by relational
operators.

22

1Trueb == 2

0Falsec != 3

0False(b + c) > (a + 5)

1True(a + b) >= c

1Truea < b

Value Result Expression

Relational Operators

► C does not have an explicit boolean type
– So integers are used instead. The general rules is:
– “Zero is false, any non-zero value is true”

►Assume that, a = 1, b = 2, and c = 3

23

Relational Operators

►Used to combine relational expressions that are
either True (1) or False (0)

►Their result is again "True" or "False«

►If a number is interpreted in logical way, the rule
is:
– 0 → False

– No zero positive or negative numbers are True.

• For example:
– -11 → True

– 0 → False

– 99 → True

►Unary NOT operator converts True to False and
False to True.

►For example: a = !6 → 0

24

X ! X

True False

False True

Relational Operators (! → NOT)

25

X Y X && Y

False False False

False True False

True False False

True True True

Relational Operators (&& → AND)

►Returns True if both conditions are True.

26

Relational Operators (&& → AND)

►First, left side of AND operator is evaluated. If left
side of AND operator is false, evaluation stops.

►For example:

– a = 4 && 0 → a = 0

– b = 10 && -4 → b = 1

27

X Y X || Y

False False False

False True True

True False True

True True True

Relational Operators (|| → OR)

►Returns True if either of it's conditions are true.

28

Relational Operators (|| → OR)

►First, left side of OR operator is evaluated. If left
side of OR operator is true, evaluation stops.

►For example:

– a = 3 || 0 → a = 1

– b = 0 || -30 → b = 1

29

Relational Operators

►The && operator has a higher precedence than ||.

►An expression containing && or || operators is
evaluated only until truth or falsehood is known.

►This performance feature for the evaluation of
logical AND and logical OR expressions is called
short-circuit evaluation

HIGH PRECEDENCE

() Left to right Paranthesis

! ++ -- Right to left Arithmetic op.

* / % Left to right

+ - Left to right

> >= < <= Left to right Relational op.

== != Left to right

&& Left to right Logical op.

|| Left to right

= Right to left LOW PRECEDENCE Asignment op.

30

Notice that using parenthesis is the best way
for not having mistake.

Precedence of Operators

• Example1:
– a= 15;
– x = a >= 10 && a <= 20;
– Here, x = 1

• Example2:
– a= 20;
– b= 10;
– y = a + b >= 20 || a – b <=

10;
– Here, y = 1

31

• Example3:
• a= 5;
• b= 0;
• y = a || b && a

&& b
• Here, y = 1

Example Operations in Operators

32

• Doç. Dr. Fahri Vatansever, “Algoritma
Geliştirme ve Programlamaya Giriş”, Seçkin
Yayıncılık, 12. Baskı, 2015

• J. G. Brookshear, “Computer Science: An
Overview 10th Ed.”, Addison Wisley, 2009

• Kaan Aslan, “A’dan Z’ye C Klavuzu 8. Basım”,
Pusula Yayıncılık, 2002

• Paul J. Deitel, “C How to Program”, Harvey
Deitel.

33

References

	Slayt 1: CPE101 Programming Languages I
	Slayt 2
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29
	Slayt 30
	Slayt 31
	Slayt 32
	Slayt 33

