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Variable Concept and Basic Operators
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Object

►Any accessible thing which takes a memory space 
is called an object.

►An expression should indicate a memory space to 
be called as an object.

▪ a = b+c;

▪ d = 100;

►In the above expressions, a, b, c and d are all an 
object.



3

Object

►Properties of Objects: name, value, type, scope, 
lifetime.

►Name: Characters that represent an object.

►Value: Information stored in an object. It can be 
changed at any time.

►Type: A property that specifies how a compiler 
behaves to an object on a process.

– Most of the programming languages includes object 
types such as char, integer and float.



►Assigns a value to an object. It is showed by an 
equal sign " = " in C. 

►Usage of assignment operator:

object = expression;

►Examples:

4

a = 23;

b = a * 10;

total = total + b;

Assignment Operator
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Left Values (lvalue)

►All expressions that specify object are left values.

►An expression is called as left value if it shows a 
location in the memory.

►For example, in previous example expression, a 
and b are the left values.

►But, a+b is not a left value. It only represents a 
number which indicates the sum of a and b.

►For example we can not write, a+b = c



►Expressions that do not specify objects. They take 
place on the right side of assignment operator.

►Constants are always right value.

►For example, in an expression a = 100; a indicates 
a left value and 100 indicates right value.

►An expression like 100 = a;  is wrong.

►Following expressions have mistakes.
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20 = ...;     /* mistake */

c – 4 = ...;  /* mistake */

(y) = ...;    /* mistake */

m * 2 = ...;  /* mistake */

Right Value (rvalue)
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Object Type

►All information that points a memory space or not, 
is called data.

►Both constants and objects are all data.

►The way that compiler interprets an information 
stored inside an object depends on the type of 
that object. 

►At the same time, an object type gives information 
about the amount of memory space that is 
consumed by the object.
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Object Type

►Objects are stored at a location inside the memory.
►For example, objects "a" and "b" are put in a free 

location in the memory.
►Memory space they consume depends on their types 

and can be different.
►"a" and "b" are only labels that indicate the starting 

point of a location in the memory.
►An assignment like a = 100 changes the value in the 

memory location indicated by related object.
►For example, we have two objects assigned with 

values a= 100 and  b = 50
►An expression like a = b + 80 only changes the value of 

a but b is preserved.
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Object Type
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Expression

►An expression is a mathematical formula used for 
calculation and end with a semicolon ";"
– (a+b)/4;

– a*b+c;

►Expressions are formed by Operators

►C operators can be classified as shown below:
– Assignment Operator (=)

– Arithmetic Operators (+, -, *, /, %)

– Arithmetic Assignment Operators (+=, -=, *=, …)

– Increment and Decrement Operators (++, --)

– Relational Operators (<, <=, ==, >=, >)

– Logical Operators (&&, ||, !)
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Arithmetic Operators

►The arithmetic operators are all binary operators. 

–For example the expression 3+7 contains the binary 
operator + and the operands 3 and 7.

►The asterisk (*) indicates multiplication and the 
percent sign (%) denotes the remainder operator.

►Integer division yields an integer result. 

–For example the expression 7/4 yields 1. 
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Arithmetic Operators

►C provides remainder operator %, which yields the 
remainder after integer division. 

►The remainder operator is an integer operator that 
can only be used with integer operands. 

►The expression x % y yields the remainder after x is 
divided by y.  Thus 7%4 yields 3.
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Operation
Arithmetic 
Operator

Addition +

Subtraction -

Multiplication *

Division /

Remainder %

Arithmetic Operators
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ORDER OPERATOR OPERATION

1 ( ) Paranthesis

2 *
/
%

Mutiplication
Division
Remainder

3 +
-

Addition
Subtraction

Precedence Rules on Arithmetic Operators
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Precedence Rules on Arithmetic Operators

►Expressions within pairs of parentheses are evaluated 
first. 

► Parentheses are said to be highest level of precedence.

► In cases of nested or embedded parentheses such as
– ((a+b)+c) (the operators in the innermost pair of parentheses are applied 

first) 

► Paranthesis in the same level are evaluated from left to 
right.

► Multiplication, division and remainder comes after 
parenthesis.

► Addition and subtraction has the same level of precedence, 
which is lower than the precedence of multiplication, 
division and remainder operations.
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Precedence Rules on Arithmetic Operators

► Multiplication, division and remainder are said to be on the 
same level of precedence.

► If an expression contains several multiplication, division and 
remainder operations, evaluation proceeds from left to 
right.

► If an expression contains several addition and subtraction 
operations, evaluation proceeds from left to right.

► Remembering rules of precedence can be complex. 
► You would better try to use parenthesis in order to 

specify precedence of operators in expressions. 
• For example: result = (a*b) + (a/b); 



► If we want to divide the entire quantity (a+b+c+d+e) by 5. 
 m= (a + b + c + d + e) / 5;

► Here, parentheses are required to group the additions because division 
has higher precedence than addition.

► If the parentheses are omitted we obtain a+b+c+d+e/5. And it would first 
calculate e/5 then additions.

 z  =  p   *   r   %  q  +  w  /  x    –   y;

• y = a * x * x + b * x + c;
a = 2, b = 3, c = 7 and x = 5
y = 2 * 5 * 5 + 3 * 5 + 7
y = 10 * 5 + 3 * 5 + 7
y = 50 + 3 * 5 + 7
y = 50 + 15 + 7
y = 65 + 7
y = 72
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6 1 2 4 3 5

Precedence Rules on Arithmetic Operators
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Arithmetic Assignment Operators

►Arithmetic assignment operators are:
+=    -=    *=    /=    %=   …



►result = ++a;  → first increment the value of a, 
then assign it to result (preincrement)

►Same with :

►result = --a;  → first decrement the value 
of a, then assign it to the result 
(predecrement)

• Same with:
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a = a+1;

result = a;

a = a-1;

result = a;

Unary Increment and Decrement Operators



► result = a++;  → First assign the value of a to result, then increment 
the value of a (postincerement)

► Same with:

► result = a--;  → First assign the value of a to result, then 
decrement the value of a (postdecrement)

► Same with:

► It’s important to note here that when incrementing or 
decrementing a variable in a statement by itself, the preincrement 
and postincrement forms have the same effect. Same with:
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result = a; 

a = a+1;

result = a;

a = a-1;

Unary Increment and Decrement Operators
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Relational Operator

== X == Y X is equal  to Y

!= X != Y X is not equal to Y

> X > Y X is greater than Y

< X < Y X is less than Y

>= X >= Y X is greater than or equal to Y

<= X <= Y X is less than or equal to Y

Relational Operators

►Expressions that compare two values and produce 
either True (1) or False (0) are formed by relational 
operators.
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1Trueb ==  2

0Falsec != 3

0False(b + c) > (a + 5)

1True(a + b) >= c

1Truea < b

Value Result Expression 

Relational Operators

► C does not have an explicit boolean type
– So integers are used instead. The general rules is:
– “Zero is false, any non-zero value is true”

►Assume that, a = 1, b = 2, and c = 3
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Relational Operators

►Used to combine relational expressions that are 
either True (1) or False (0)

►Their result is again "True" or "False«

►If a number is interpreted in logical way, the rule 
is:
– 0 → False  

– No zero positive or negative numbers are True.

• For example:
– -11 → True

– 0 → False

– 99 → True



►Unary NOT operator converts True to False and 
False to True.

►For example: a = !6 → 0
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X ! X

True False

False True

Relational Operators (! → NOT)
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X Y X && Y

False False False

False True False

True False False

True True True

Relational Operators (&& → AND)

►Returns True if both conditions are True.
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Relational Operators (&& → AND)

►First, left side of AND operator is evaluated. If left 
side of AND operator is false, evaluation stops.

►For example: 

– a = 4 && 0 → a = 0

– b = 10 && -4 → b = 1
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X Y X || Y

False False False

False True True

True False True

True True True

Relational Operators (|| → OR)

►Returns True if either of it's conditions are true.
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Relational Operators (|| → OR)

►First, left side of OR operator is evaluated. If left 
side of OR operator is true, evaluation stops.

►For example: 

– a = 3 || 0 → a = 1

– b = 0 || -30 → b = 1
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Relational Operators

►The && operator has a higher precedence than ||.

►An expression containing && or || operators is 
evaluated only until truth or falsehood is known.

►This performance feature for the evaluation of 
logical AND and logical OR expressions is called 
short-circuit evaluation



HIGH PRECEDENCE

( ) Left to right Paranthesis

! ++   -- Right to left Arithmetic op.

*   /   % Left to right

+   - Left to right

>   >=  < <= Left to right Relational op.

==    != Left to right

&& Left to right Logical op.

|| Left to right

= Right to left LOW PRECEDENCE Asignment op.
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Notice that using parenthesis is the best way 
for not having mistake.

Precedence of Operators



• Example1: 
– a= 15;
– x = a >= 10 && a <= 20;
– Here, x = 1

• Example2:
– a= 20;
– b= 10;
– y = a + b >= 20 || a – b <= 

10;
– Here, y = 1 
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• Example3:
• a= 5;
• b= 0;
• y = a || b && a 

&& b
• Here, y = 1 

Example Operations in Operators
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