
1

Assist. Prof. Dr. Caner Özcan

Week 4
Pointers

CME 112- Programming Languages II

Kindness is the golden chain by which society is bound together. ~Goethe

2

► When a variable defined it is stored somewhere in
memory.

► Memory can be thought as block consist of cells.

► When a variable defined, required number of cell from
memory is allocated for the variable.

► How many cell will be reserved for the variable depends
on the type of variable.

Memory Structure

2

3Memory Structure

3

4

► If we illustrate the structure of memory after the code in
previous slide.

▪ Assume that size of int is 2 byte, size of float is 4 byte and size of
char is byte.

▪ Each cell represents 1 byte space.

▪ Memory portion for defined variables starts from the address 4300.

Memory Structure

4

5

► When a variable is defined, a space required for the
variable is reserved in the memory.

► E.g. definition int num1 reserves 2 byte space for
variable num1.

► After that if the value 5 is assigned on variable num1, 5 is
stored in memory location allocated for that variable.

► Actually, all operations taken on variable num1 is the
modification of cells in the memory location between 4300
and 4302.

► Variable is actually a memory location reserved for a
particular label.

Memory Structure

5

6

► Pointer is a data type that shows the memory address of
a data block.

data_type *p;
► Variable p stores the address of a variable which is in
<data_type> type

int *iptr;
float *fptr;

► The only thing that we should pay attention is defining
pointer suitable for the data type it points.

► A float variable must only be pointed by a float type
pointer.

Defining Pointer

6

7

► To make a pointer show the address of a variable, address
of the variable should be assigned to the pointer.

► For this purpose we should know the address of the
memory location used for the variable.

► It is possible with address operator (&).

▪ &y → gives the address of variable y.

int y = 5;

int *yPtr;

yPtr = &y;

Defining Pointer

7

8

► After assigning the address of a variable to a pointer,
pointer starts to show the address of related variable.

► If we want to access or modify the value of a variable
with pointer, we should use * character in the beginning of
pointer name.

► All modifications done with * character in the beginning
of pointer name effects the original variable.

Defining Pointer

8

9Defining Pointer

9

10

► Using pointers, we can change the values of stored
variables.

► For accessing the value of a variable with pointer, we
should use * character in the beginning of pointer name.

Accessing Variables by Pointers

10

11Associating Variables with Pointers

11

12

► You can change the variable that pointer shows
constantly throughout the program.

Defining Pointer

12

13

► Malloc function is used to show a pointer to an empty
block of data.

► Thus, space for data is allocated dynamically.

▪ malloc(n) → Takes the n byte place from empty memory
and returns the starting address.

▪ iptr = (int*) malloc(sizeof(int));

▪ else iptr = (int*) malloc(4);

Defining Pointer

13

14

► Pointers generally have a fixed size, for example on a 32-
bit system they're usually 32-bit.

Size of Pointer

14

15

► As seen that pointers store the memory addresses of
variables.

► Pointer is also a variable and an other pointer that shows
a pointer can be defined.

► If we define a pointer variable that shows a pointer; we
use '**' in the beginning of pointer name.

► Number of * can change. If we define a pointer that
points an other pointer that points an other pointer we have
to use ‘***’.

Pointers that point other Pointers

15

16Pointers that point other Pointers

16

17

► We can use increment (++), decrement (--), addition (+)
or subtraction (-) operators with pointers. But this value
must be integer.

► When we increment the pointer by 1, pointer shows the
next data block.

► New pointer value depends on the data type that pointer
shows.

int i , *iPtr;

iPtr = &i; // Assume iPtr shows address 1000

iPtr += 2 // After this operation new value of iPtr is 1008
(iPtr+2*4)

► Because int type occupies 4 bytes of memory space.

Pointer Arithmetic

17

18Pointer Arithmetic

18

19

► int i , *iPtr;

► iPtr = &i; // Assume iPtr shows address 1000

► (*iPtr) ++; // Causes to increment value stored in the
address 1000.

► iPtr ++; // Causes iPtr to show address 1004 in memory

► (*iPtr) +=2; // Increase value by 2 stored in 1000

► (*iPtr) =7; // Assign 7 in address 1000.

► *(iPtr+2) = 5; // Assign 5 in address 1008.

Pointer Arithmetic

19

20Pointer Arithmetic

20

21

► An array name can be thought as a constant pointer.

► Arrays and Pointers are closely related.

► Pointers can also point arrays like they point variables.

int dizi [6];

int *ptr;

► Array name can be used to level the arrays and pointers.

ptr = dizi; //Now ptr[0] and dizi[0] is same.
► To explicitly assign ptr to the address of first element of dizi
as ptr = & dizi[0]

Relationship Between Pointers and Arrays

21

22Relationship Between Pointers and Arrays

22

23

► To access the elements of the array with pointers that shows
array.

*(ptr + n) → where n indicates the index number
of element in the array
*(ptr + 4) → gets the value of element dizi[4]

► Other alternatives for dizi[4]

ptr[4]
*(dizi + 4)

Relationship Between Pointers and Arrays

23

24Relationship Between Pointers and Arrays

24

25Relationship Between Pointers and Arrays

25

26Relationship Between Pointers and Arrays

26

27

► Arrays can contain pointer.

► Can access multiple arrays with arrays of pointers.

► We just assign the starting address of arrays to the arrays of
pointers.

► Any modification you make on array of pointer will affect the
original array.

Relationship Between Pointers and Arrays

27

28Relationship Between Pointers and Arrays

28

29

29

30Next Week

30

►Pointers

►Call by Value

►Call by Reference

►Dynamic Memory Allocation

31References

31

►Doç. Dr. Fahri Vatansever, “Algoritma Geliştirme ve

Programlamaya Giriş”, Seçkin Yayıncılık, 12. Baskı, 2015.

►Kaan Aslan, “A’dan Z’ye C Klavuzu 8. Basım”, Pusula

Yayıncılık, 2002.

►Paul J. Deitel, “C How to Program”, Harvey Deitel.

►“A book on C”, All Kelley, İra Pohl

32

CANER ÖZCAN
canerozcan@karabuk.edu.trThanks for listening

A n y

Q u e s t i o n s

?

33

Footnote..

Let the future tell the truth and evaluate each one
according to his work and accomplishments. The present
is theirs; the future, for which I really worked, is mine.

