
1

Assist. Prof. Dr. Caner Özcan

Week 2
Memory Layout of C Programs and

Recursive Functions

CME 112- Programming Languages II

We are here to make our own journey; It is not easy to find the courage to be our own on this 
journey, but without ourselves, nothing in our lives can be understood. ~D. Cüceloğlu



2

► Four storage classes are automatics, external, register, and 
static with corresponding.

▪ auto: Variables declared within function are automatic by 
default.  These variables can be used in scope of the 
function. auto double x, y;

They’re stored in the Stack.

Global variables and parameter variables cannot take 
auto property.

▪ extern: One methods of transmitting information across 
blocks and functions is to use external variables. 

If the variable defined by extern is not given the initial 
value, the compiler does not allocate space in memory.

Storage Classes

2



3

► This use of extern is used to tell the compiler to ‘’look for it 
elsewhere’’ either in this file or in some other file.

Examples: auto & extern

3

example1.c 

#include <stdio.h>

int a = 1, b = 2;
c = 3;
int f(void);
int main(void) {

printf("%3d\n", f());
printf("%3d%3d%3d\n", a, b, c);

return 0;
}

file2.c

int f(void) {

extern a;

int b, c;

b = c = a;

return (a + b + c);

}



4

▪ register: Storage class register tells the compiler that the 
association variables should be stored in high-speed 
memory registers.

Specifies that the variable is kept in the registers of the 
CPU, not in memory.

▪ static: Local variables defined in functions. 

After the function ends, the variable value is stored.

Only valid in the function they are defined.

Static local and global variables are kept in the data 
segment region.

Storage Classes

4



5Storage Classes

5

https://www.geeksforgeeks.org/storage-classes-in-c/



6

►A typical memory representation of C program consists of 
following sections.

1. Text segment
2. Initialized data 

segment
3. Uninitialized data

segment
4. Stack
5. Heap

Memory Layout of C Programs

6

https://cdncontribute.geeksforgeeks.org/wp-content/uploads/memoryLayoutC.jpg


7

1. Text Segment:

► A text segment , also known as a code segment or 
simply as text, is one of the sections of a program in an 
object file or in memory, which contains executable 
instructions.

► Usually, the text segment is sharable so that only a 
single copy needs to be in memory for frequently executed 
programs, such as text editors, the C compiler, the shells, 
and so on. 

► Also, the text segment is often read-only, to prevent a 
program from accidentally modifying its instructions.

Memory Layout of C Programs

7



8

2. Initialized Data Segment :

► A data segment is a portion of virtual address space of a 
program, which contains the global variables and static 
variables that are initialized by the programmer.

3. Uninitialized Data Segment:

► Data in this segment is initialized by the kernel to 
arithmetic ‘0’ (zero) before the program starts executing
uninitialized data starts at the end of the data segment and 
contains all global variables and static variables that are 
initialized to zero or do not have explicit initialization in 
source code.

Memory Layout of C Programs

8



9

4. Stack:

► Stack, where automatic variables are stored, along with 
information that is saved each time a function is called. 

► Each time a function is called, the address of where to 
return to and certain information about the caller’s 
environment are saved on the stack. 

► The newly called function then allocates room on the 
stack for its automatic and temporary variables. 

► This is how recursive functions in C can work. 

► Each time a recursive function calls itself, a new stack 
frame is used, so one set of variables doesn’t interfere with 
the variables from another instance of the function.

Memory Layout of C Programs

9



10

5. Heap :

► Heap is the segment where dynamic memory allocation 
usually takes place.

► Heap area is managed by malloc, realloc, and free.

Memory Layout of C Programs

10



11

► Typically, a large program is written in a separate 
directory as a collection of .h and .c file, with each .c file 
contains one or more functions definition

► When the preprocessor program receives the #include 
<"filename"> directive, it searches for the file in the same 
folder or in the system-dependent places. 

► If it cannot be found, preprocessor issues an error 
message and compilations stops. 

► Files with .h extension can include #include, #define 
directives, struct structures, function prototypes.

Creating Large Programs

11



12Creating Large Programs

12

#include "pgm.h"

int main(void)
{

int i;
for (i = 0; i < N;i++)

f2();

return 0;
}

#include <stdio.h>
#define N 5

void f2(void)
{

printf("Hello from f2()\n");
}

pgm.h

program.c



13

► Self-calling functions.

► If a function is called with a base case it returns the result.

► If a function is called with a more complex problem, the 
function divides the problem into two conceptual  pieces;

▪ First: a piece that function know how to do

▪ Second: a piece that function does not know how to do

o The second part must resemble the original problem

o The function launches a new copy of itself (recursion 
step) to solve what it does not know how to do

► Eventually base case gets solved.

Recursion

13



14

► Program that prints numbers from 1 to N on the screen with
recursion.

Recursion

14

 #include <stdio.h>

 int f(int n)

 {

 if (n == 0)

 return 0;

 f(n - 1);

 printf("%d\n", n);

 }

 int main(void)

 {

 int num = 10;

 f(num);

 return 0;

 }



15

► A recursive function that finds the sum of the numbers from 
1 to N.

Recursion

15

 #include <stdio.h>
 int sum(int n)
 {
 if (n == 1)
 return n;
 else
 return (n + sum(n - 1));
 }

 int main(void)
 {
 int num = 10;
 printf("Result = %d", sum(num));
 return 0;
 }



16Recursion

16



17

► Program that prints the multiplication table as a recursive.

Recursion

17

#include <stdio.h>
int table(int x) {

int i;
if (x <= 10) {

for (i = 1; i<11; i++)
printf("%-3d", x*i);

printf("\n");
return table(x + 1);

}
else return 1;

}

int main(void){
int x = 1;
table(x);
return 0;

}



18

► A recursive definition of the factorial function is arrived at by 
observing the following definition.

n! = n. (n-1)!
► Example: factorial

▪ 5! = 5. 4. 3. 2. 1
▪ Notice that

5! = 5. 4!
4! = 4. 3!...

▪ Can compute factorials recursively
▪ Solve base case ( 1! = 0! =1) then

2! = 2. 1! = 2*1 = 2
3! = 3. 2! = 3*2 = 6

Recursion

18



19Recursion

19



20

► Recursion program to calculate and print the factorials of 
integers 0-10.

Recursion

20

#include <stdio.h>
long faktorial(long n){

if (n <= 1)
return 1;

else
return (n*faktorial(n - 1));

}
int main(void){

int i;
for (i = 0; i <= 10; i++) {

printf("%d! = %d\n", i, faktorial(i));
}
return 0;

}



21

► Fibonacci series: 0, 1, 1, 2, 3, 5, 8...

► Each number is the sum of the previous two.

► Base case:

Fib(0) = 0
Fib(1) = 1

► Can be solved recursively:

Fib (n) = Fib(n-1) + Fib(n-2)

Recursion Fibonacci Numbers

21



22

► Figure shows how function Fibonacci would evaluate 
fibonacci(3)

Recursion Fibonacci Numbers

22



23

► Calculating nth Fibonacci number recursively.

Recursion Fibonacci Numbers

23

#include <stdio.h>
long fibonacci(long n){

if (n == 0 || n == 1)
return n;

else
return fibonacci(n - 1) + fibonacci(n - 2);

}
int main(void){

long i, n;
printf("How many fibonacci numbers?:");
scanf("%d", &n);
for (i = 1; i <= n; i++){

printf("Number %d: %ld\n", i, fibonacci(i));
}
return 0;

}



24



25

25

► A matrix of size mxn consists of values 1 and 0. Write the C program that 

finds the shortest path from 0x0 to mxn point. One (1) values in matrix 

means path, zero (0) means wall. So you cannot go to the coordinate or 

position with zero value. You can move in all four directions (up, down, 

left and right). An example path is given below.

Recursive Shortest Path Finding



26Next Week

26

►Examples with recursive functions



27References

27

►Doç. Dr. Fahri Vatansever, “Algoritma Geliştirme ve

Programlamaya Giriş”, Seçkin Yayıncılık, 12. Baskı, 2015. 

►Kaan Aslan, “A’dan Z’ye C Klavuzu 8. Basım”, Pusula

Yayıncılık, 2002.

►Paul J. Deitel, “C How to Program”, Harvey Deitel.

►“A book on C”, All Kelley, İra Pohl



28

CANER ÖZCAN
canerozcan@karabuk.edu.trThanks for listening

A       n      y   

Q     u      e       s        t       i       o       n      s

?      



29

It is difficult to find a black cat in a dark room, especially if 
there are no cats in the room. This phrase describes the 
progress of science. It says that science is much different 
from what is described in TV, newspapers, internet news 
and high school curriculum.

Footnote..


