o jo ? 4 e o | o

I = Mk[i iy

ik

CME 112- P‘rogramming Languages i

Week 2

Memory Layout of C Programs and

Recursive Functions

Assist. Prof. Dr. Caner Ozcan

e to make our own journey; It is not easy to find
t without ourselves, nothing in our lives can be

to be our own on this
~D. Ciiceloglu

Storage Classes E

» Four storage classes are automatics, external, register, and
static with corresponding.

= auto: Variables declared within function are automatic by
default. These variables can be used in scope of the
function. auto double x, y;

They’re stored in the Stack.

Global variables and parameter variables cannot take
auto property.

= extern: One methods of transmitting information across
blocks and functions is to use external variables.

If the variable defined by extern is not given the initial
value, the compiler does not allocate space in memory.

R M

Examples: auto & extern B

» This use of extern is used to tell the compiler to “look for it
elsewhere’ either in this file or in some other file.

examplel.c file2.c
#include <stdio.h>
int f(void) {

inta=1,b=2; extern a;
c=3; .

’ tb,c;
int f(void); el
int main(void) { b=c=3;

return (a + b + c);
printf("%3d\n", f()); }

printf("%3d%3d%3d\n", a, b, c);

return O;

Storage Classes -

= register: Storage class register tells the compiler that the
association variables should be stored in high-speed
memory registers.

Specifies that the variable is kept in the registers of the
CPU, not in memory.

= static: Local variables defined in functions.
After the function ends, the variable value is stored.
Only valid in the function they are defined.

Static local and global variables are kept in the data
segment region.

R M

Storage Classes

Storage classes in C

A Storage

Specifier Storage

Initial
value

Scope

Life

auto stack

Garbage

Within block

End of block

Data

extern segment

Zero

global
Multiple files

Till end of
program

BE]E]
segment

static

Zero

Within block

Till end of
program

CPU
Register

register

Garbage

Within block

End of block

https://www.geeksforgeeks.org/storage-classes-in-c/

'Memory Layout of C Programs m

» A typical memory representation of C program consists of
following sections.
high
address < @ command-line arguments
and environment variables
1. Text segment —
2. Initializeddata [1 """"
segment
3. Uninitialized data
segment | _____ T
4. Stack heap
5. Heap uninitialized rInitpiiaa fo-zee
data(bss) - > R——
initialized 2N\ .
data program file by
low text exec
address aisc NV

https://cdncontribute.geeksforgeeks.org/wp-content/uploads/memoryLayoutC.jpg

Memory Layout of C Programs

1. Text Segment:

» A text segment, also known as a code segment or
simply as text, is one of the sections of a program in an
object file or in memory, which contains executable
instructions.

» Usually, the text segment is sharable so that only a
single copy needs to be in memory for frequently executed
programs, such as text editors, the C compiler, the shells,
and so on.

» Also, the text segment is often read-only, to prevent a
program from accidentally modifying its instructions.

R M

Memory Layout of C Programs

2. Initialized Data Segment :

» A data segment is a portion of virtual address space of a
program, which contains the global variables and static
variables that are initialized by the programmer.

3. Uninitialized Data Segment:

» Data in this segment is initialized by the kernel to
arithmetic ‘O’ (zero) before the program starts executing
uninitialized data starts at the end of the data segment and
contains all global variables and static variables that are
initialized to zero or do not have explicit initialization in
source code.

R M

Memory Layout of C Programs

4. Stack:

» Stack, where automatic variables are stored, along with
information that is saved each time a function is called.

» Each time a function is called, the address of where to
return to and certain information about the caller’s
environment are saved on the stack.

» The newly called function then allocates room on the
stack for its automatic and temporary variables.

» This is how recursive functions in C can work.

» Each time a recursive function calls itself, a new stack
frame is used, so one set of variables doesn’t interfere with
the variables from another instance of the function.

Memory Layout of C Programs

5. Heap:

» Heap is the segment where dynamic memory allocation
usually takes place.

» Heap area is managed by malloc, realloc, and free.

#include <stdio.h>

int global; /* Uninitialized variable stored in bss*/
int main(void)

{

int *ptr_one;

ptr_one = (int *)malloc(sizeof(int)); /* memory allocating in heap segment */
int c¢;//local variable stored in stack

static int 1 = 10@; /* Initialized static variable stored in DS*/

static int k; /* Initialized static variable stored in bss*/

return 9;

'Creating Large Programs

» Typically, a large program is written in a separate
directory as a collection of .h and .c file, with each .c file
contains one or more functions definition

» When the preprocessor program receives the #include
<"filename"> directive, it searches for the file in the same
folder or in the system-dependent places.

» If it cannot be found, preprocessor issues an error
message and compilations stops.

» Files with .h extension can include #include, #define
directives, struct structures, function prototypes.

R M

#include "pgm.h"

int main(void)
{
inti;
for (i=0; i< N;i++)
f2();

return O;

Creating Large Programs

#include <stdio.h>
#Hdefine N 5

void f2(void)
{

printf("Hello from f2()\n");
}

\

program.c

\

pgm.h

R M

Recursion El

» Self-calling functions.
» |If a function is called with a base case it returns the result.

» |If a function is called with a more complex problem, the
function divides the problem into two conceptual pieces;

= First: a piece that function know how to do
= Second: a piece that function does not know how to do
o The second part must resemble the original problem

o The function launches a new copy of itself (recursion
step) to solve what it does not know how to do

» Eventually base case gets solved.

R M

Recursion B

» Program that prints numbers from 1 to N on the screen with
recursion.

#include <stdio.h>
int f(int n)
{
if (n == 0)
return 0;
f(n - 1);
printf("%d\n", n);
}
int main(void)
{
int num = 10;
f(num);
return 0;

Recursion =

» A recursive function that finds the sum of the numbers from
1 to N.

#include <stdio.h>
int sum(int n)
{
if (n == 1)
return n;
else
return (n + sum(n - 1));

¥

int main(void)

{

int num = 10;
printf("Result = %d", sum(num));
return 0;

Recursion

int main() {

result = sum(number) <

i.. on 005

int sum(int n)

{
if(ni=e) |[3] [2]

return n + sum(n-1);
else
return n;

AN

int sum(int n)

{
if(ni=e) [2] [1]

return n + sum(n-1);
else
return;

\

int sum(int n)

if(n!=0)

return n + sum(n-1);
else
return n;

N

int sum(int n)

if(n!=0)
return n + sum(n-1);

else

return n;

§3+3=6
. is returned

oy E

(,

o .

142 = 3
is returned

o+1 = 1
is returned

0
is returned

Recursion

» Program that prints the multiplication table as a recursive.

#include <stdio.h>
int table(int x) {
int i;
if (x <= 10) {
for (i = 1; i<11; i++)
printf("%-3d", x*i);
printf("\n");
return table(x + 1);

}

else return 1;

}

int main(void){
int x = 1;
table(x);
return 0;

}

Recursion =

» A recursive definition of the factorial function is arrived at by
observing the following definition.

n! =n. (n-1)!
» Example: factorial

= 51=5.4.3.2.1
= Notice that
51=5.4]
41 =4, 31...
= Can compute factorials recursively
= Solve base case (1! =0! =1) then
21=2.11=2%1=2
31=3.21=3%2=6

R M

'Recursion

Final value = 120
5! 5!
l T 5I=5%24 =120 is returned
5 % 4] 5 % 4]
l T Al =4%6=241is returned
4 * 3 4 % 3
l T 31=3%2=61s returned
ol 3 % 21
l T 21=2% | =2is returned
2 * 1! 2 % 1!
¢ T | returned
1 1

(b) Values returned from each recursive call.

(a) Sequence of recursive calls.

Recursion El

» Recursion program to calculate and print the factorials of
integers 0-10.

#include <stdio.h>
long faktorial(long n){
if (n <= 1)
return 1;
else
return (n*faktorial(n - 1));
}
int main(void){
int 1i;
for (1 = 90; 1 <= 10; i++) {
printf("%d! = %d\n", i, faktorial(i));

}

return 9;

Recursion Fibonacci Numbers

» Fibonacciseries: 0,1, 1, 2, 3,5, 8...
» Each number is the sum of the previous two.
» Base case:

Fib(0) =0

Fib(1)=1

» Can be solved recursively:
Fib (n) = Fib(n-1) + Fib(n-2)

R M

Recursion Fibonacci Numbers

» Figure shows how function Fibonacci would evaluate
fibonacci(3)

fibonacci(3)

|

| I
return fibonacci(2) + fibonacci(1)

/ AN

[| [I
return fibonacci(1) + fibonacci(0) return 1

| |

return 1 return 0

Recursion Fibonacci Numbers

» Calculating nt" Fibonacci number recursively.

#include <stdio.h>
long fibonacci(long n){
if (n==0 || n==1)
return n;
else
return fibonacci(n - 1) + fibonacci(n - 2);
}
int main(void){
long i, n;
printf("How many fibonacci numbers?:");
scanf("%d", &n);
for (1 = 1; 1 <= n; i++){
printf("Number %d: %ld\n", i, fibonacci(i));

}

return 0;

KELCL RSHON

RECURSION
RECURSION

Here we go again

RECURSION

Here we go again

RECURSION

Here we go again

Recursive Shortest Path Finding el

» A matrix of size mxn consists of values 1 and 0. Write the C program that
finds the shortest path from 0x0 to mxn point. One (1) values in matrix
means path, zero (0) means wall. So you cannot go to the coordinate or
position with zero value. You can move in all four directions (up, down,

left and right). An example path is given below.

01110010110
01111101000
11111101010
010103011111
010113110001
1110138111111

Homework 3>

'Next Week

» Examples with recursive functions

WHAT ARE YOU WORKING ON?

TRYING TO FiX THE. PROBLEMS T

CREATED WHEN I TRIED o Fix

THE PROGLEMS I CREATED \JHEN

LTRIED To FiX THE PROBLEMS
v T CREATED LJHEN...

/

e

References

» Doc. Dr. Fahri Vatansever, “Algoritma Gelistirme ve

Programlamaya Giris”, Seckin Yayincilik, 12. Baski, 2015.

» Kaan Aslan, “A’dan Z’ye C Klavuzu 8. Basim”, Pusula

Yayincilik, 2002.
» Paul J. Deitel, “C How to Program”, Harvey Deitel.

» “A book on C”, All Kelley, Ira Pohl

R M

© ?

. . . CANER OZCAN
Th a n kS fO r I ISte n I ng i = canerozcan@karabuk.edu.tr

Footnote..

It is difficult to find a black cat in a dark room, especially if
there are no cats in the room. This phrase describes the
progress of science. It says that science is much different
from what is described in TV, newspapers, internet news
and high school curriculum.

